Underreporting of errors in NLG output, and what to do about it
Emiel van Miltenburg,
Miruna Clinciu,
OndĹej DuĹĄek,
Dimitra Gkatzia,
Stephanie Inglis,
Leo Leppänen,
Saad Mahamood,
Emma Manning,
Stephanie Schoch,
Craig Thomson,
and Luou Wen
In Proceedings of the 14th International Conference on Natural Language Generation,
2021
Commendation for Outstanding Position Paper
We observe a severe under-reporting of the different kinds of errors that Natural Language Generation systems make. This is a problem, because mistakes are an important indicator of where systems should still be improved. If authors only report overall performance metrics, the research community is left in the dark about the specific weaknesses that are exhibited by âstate-of-the-artâ research. Next to quantifying the extent of error under-reporting, this position paper provides recommendations for error identification, analysis and reporting.